Voice Pathology Analysis using DT-CWPT and ReliefF Algorithm

Author:

Kassim Farah Nazlia Che,Vijean Vikneswaran,Muthusamy Hariharan,Abdullah Rokiah,Abdullah Zulkapli

Abstract

Abstract Voice pathology analysis has been one of the useful tools in the diagnosis of the pathological voice. This method is non-invasive, inexpensive and reduces time required for analysis. This paper investigates the feature extraction based on the Dual-Tree Complex Wavelet Packet Transform (DT-CWPT) with entropies and energy measures tested with two classifiers, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). Feature selection using ReliefF algorithm is applied to reduce redundancy features set and obtain the optimum features for classification. Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and Saarbruecken Voice Database (SVD) are used. This research was done on multiclass and by specific pathology. The experimental results automates the process of voice analysis hence produce promising results of the presence of diseases in vocal folds.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. An optimum algorithm in pathological voice quality assessment using wavelet-packet-based features, linear discriminant analysis and support vector machine;Arjmandi;Biomedical Signal Processing and Control,2012

2. Voice pathology identification: a survey on voice disorder;Selvakumari;International Journal of Engineering and Manufacturing,2017

3. On the design of automatic voice condition analysis systems . Part I: Review of concepts and an insight to the state of the art;Gómez-garcía;Biomedical Signal Processing and Control,2019

4. A survey on machine learning approaches for automatic detection of voice disorders;Hegde,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3