Predictive Systems: Role of Feature Selection in Prediction of Heart Disease

Author:

Panda Debjani,Ray Ratula,Abdullah Azian Azamimi,Dash Satya Ranjan

Abstract

Abstract As per recent trends heart disease has become the major factor for untimely deaths. There are huge amounts of clinical data available from biomedical devices and various applications used by hospitals. Artificial Intelligence is rigorously being used in predicting conditions of heart patients. This is mainly achieved by machine learning where a model is trained with sample cases and is then used for prediction of the ailment as per data available from clinical tests of the patient. This paper focuses in analyzing the accuracy of various classification algorithms, when they are supervised by set of features. Feature selection plays an important role in eliminating redundant and irrelevant features and reduces the training cost and time of the predictive models. The classification algorithms, which have been analyzed include Naive Bayes, Random Forest, Extra Trees and Logistic regression which have been provided with selected features using least absolute shrinkage and selection operator (LASSO) and Ridge regression. The accuracy of the classifiers shows remarkable improvement after using feature selection. The prediction has improved on an average by 33.3% using Lasso regression as compared to 30.73% using ridge regression.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Epidemiology and risk profile of heart failure;Bui;Nature Reviews Cardiology,2011

2. A comparison of the perceptive approaches for preprocessing the data set for predicting fertility success rate;Durairaj;Int. J. Control Theory Appl.,2016

3. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques;Tripoliti;Computational and structural biotechnology journal,2017

4. Relief-based feature selection: introduction and review;Urbanowicz,2018

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3