The construction of real Frobenius Lie algebras from non-commutative nilpotent Lie algebras of dimension

Author:

Kurniadi E,Carnia E,Supriatna A K

Abstract

Abstract In this present paper, we study real Frobenius Lie algebras constructed from non-commutative nilpotent Lie algebras of dimension ≤ 4. The main purpose is to obtain Frobenius Lie algebras of dimension ≤ 6. Particularly, for a given non-commutative nilpotent Lie algebras N of dimension ≤ 4 we show that there exist commutative subalgebras of dimension ≤ 2 such that the semi-direct sums ɡ = N⊕T is Frobenius Lie algebras. Moreover, T is called a split torus which is a commutative subalgebra of derivation of N and it depends on the given N. To obtain this split torus, we apply Ayala’s formulas of a Lie algebra derivation by taking a diagonal matrix of a standard representation matrix of the Lie algebra derivation of N. The discussion of higher dimension of Frobenius Lie algebras obtained from non-commutative nilpotent Lie algebras is still an open problem.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Classification of Frobenius Lie algebras of dimension ≤ 6;Csikós;Publ. Math,2007

2. Computing invariants and semi-invariants by means of Frobenius Lie algebras;Ooms;J. Algebra,2009

3. The principal element of a Frobenius Lie algebra;Gerstenhaber;Lett. Math. Phys,2009

4. On properties of principal elements of Frobenius Lie algebras;Diatta;J. Lie Theory,2014

5. Harmonic analysis for 4-dimensional real Frobenius Lie algebras;Kurniadi,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3