Adjustable robust counterpart optimization model for internet shopping online problem

Author:

Chaerani D,Rusyaman E,Mahrudinda ,Marcia A,Fridayana A

Abstract

Abstract In this paper, a discussion on deriving the Adjustable Robust Counterpart for Internet Shopping Online (ARC-ISO) is discussed. The problem on Internet Shopping Online is considered as an application of Robust Maximum Flow Problem (RMFP) with circular demand. The decision variables which considered as the adjustable variable is the maximum flow from a destination node in a flow network which back to the source node. In this paper, when the source nodes is multiple, then it is possible to add a dummy node as a single source node. For the multiple destinations, the same design is done. The main challenge is when and how we assume the data can be uncertain and assumed to be lies within a box, an ellipsoidal or polyhedral uncertainty set. In this paper, the uncertain delivering time is assumed to be lied in a polyhedral uncertainty set.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

1. A recommender system using GA K-means clustering in an online shopping market

2. How to efficiently solve internet shopping optimization problem with price sensitive discounts?;Musial,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3