Reconstruction of dynamic wind turbine wake flow fields from virtual Lidar measurements via physics-informed neural networks

Author:

Zhang Jincheng,Zhao Xiaowei

Abstract

Abstract Accurate characterisation of wind turbine wakes is important for the optimal design and operation of wind farms. However, current techniques for full-scale wind measurements are still limited to point characterisation. To address the research challenge in obtaining field characterisation of real-world wind turbine wakes, this work investigates the reconstruction of the dynamic wake flow fields based on a virtual turbine-mounted Lidar and physics-informed neural networks. Specifically, the wake flow field is reconstructed by fusing the sparse measurements with the two-dimensional Navier-Stokes equations without imposing any models for the unsteady wake. Different from supervised machine learning approaches which need the measured values for the quantities of interest in the first place, the proposed method can achieve the prediction of the wind velocity at new locations where there is no measurement available. The reconstruction performance is evaluated via high-fidelity numerical experiments and it is shown that the dynamic wind turbine wake flow fields are predicted accurately, where the main wake features, including the downwind development and crosswind meandering of the wake, are both captured. This work thus paves the way for investigating full-scale in situ wake flow dynamics in real-world wind energy sites.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3