Enhancing Wind Farm Efficiency Through Active Control of the Atmospheric Boundary Layer’s Vertical Entrainment of Momentum

Author:

Ferreira Carlos,Bensason David,Broertjes Thomas J.,Sciacchitano Andrea,Martins Flavio A. C.,Ajay Adhyanth Giri

Abstract

Abstract In contemporary wind farm design, the primary focus has traditionally been on reducing wake interference to optimize energy capture from horizontal wind flows. However, with the scaling up of wind farms, their interaction with the Atmospheric Boundary Layer (ABL) evolves, making vertical entrainment the main mechanism for the exchange of momentum and energy. This study introduces a methodical approach to augment the efficiency of large-scale offshore wind farms by actively controlling this vertical entrainment of momentum within the ABL. The strategy involves the precise engineering of advection fluxes to alter wind flow dynamics, utilizing turbines as effective vortex generators, toward a process of ”regenerative wind farming.” This setup aims to create a vorticity and vertical flux system akin to those observed in highly unstable ABLs. Expanding upon previous studies that focused on single Vertical Axis Wind Turbines (VAWTs), our research explores the implementation of multi-rotor systems equipped with lift-generating wings. These systems are designed to exert forces perpendicular to the prevailing wind direction, thus creating trailing vortices and directing the flow orthogonally for improved vertical advection. This research is part of a comprehensive investigative framework that combines experiments and multifidelity simulations. The current study extends those findings to wind farm simulations, aiming to assess the impact of ABL control on a full wind farm scale. The first part of the work validates an established analytical wind farm performance model against real wind farm data for thirty-one wind farms in the North Sea and Baltic Sea. The results confirm the predicted trend of decreased performance with increased wind farm size and density. The model is used to calculate the performance of a wind farm for varying regimes of vertical entrainment due to the creation of large-scale circulatory systems. The results are compared against 3D vortex simulations of the full wind farm in ”regenerative wind farming” mode. Our results demonstrate a notable improvement in wind speeds at the turbine hub height and the potential to double the feasible density of wind farms without compromising efficiency compared to traditional setups. These findings suggest a promising pathway towards a more sustainable and profitable future in wind energy, achieved through the strategic manipulation of ABL momentum, regenerating the energy in the wind farm.

Publisher

IOP Publishing

Reference12 articles.

1. Lift-induced wake re-energization for a vawt-based multi-rotor system;Broertjes,2024

2. Large eddy simulation study of fully developed wind-turbine array boundary layers;Calaf;Physics of Fluids,2010

3. Global available wind energy with physical and energy return on investment constraints;Dupont;Applied Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3