Detection of Malicious Domain Name Based on DNS Data Analysis

Author:

Zhang Kunsan,Ji Wen,Li Nan,Wang Yiting,Liao Shengyang

Abstract

Abstract This paper describes the research background of malicious domain name detection based on DNS data analysis, obtains DNS data through active domain name data or passive domain name data, then obtains DNS data through knowledge-based methods, detection methods based on machine learning and hybrid methods, and finally puts forward research suggestions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. A Survey on Malicious Domains Detection through DNS Data Analysis[J];Zhauniarovich;Acm Computing Surveys,2018

2. Seven months’ worth of mistakes: A longitudinal study of typosquatting abuse;Pieter,2015

3. SUT: Quantifying and mitigating URL typosquatting;Anirban;Comput. Netw.,2011

4. Every second counts: Quantifying the negative externalities of cybercrime via typosquatting;Khan,2015

5. The long “taile” of typosquatting domain names;Szurdi,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfer learning with ResNet50 for malicious domains classification using image visualization;Discover Artificial Intelligence;2024-07-26

2. Research on Client Transformation and Upgrade Technology for 3D GIS Modeling Based on Power Grid;2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC);2023-09-15

3. A Vulnerability Detection System for Power Internet of Things Equipment;2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA);2023-05-26

4. A fast finding method for power Internet of Things equipment vulnerabilities based on page adaptive replacement cache replacement algorithm;2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA);2023-05-26

5. Malicious DNS Detection and Prediction Using SMOTE-ENN and Hybrid Artificial Neural Network;2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3