Coupled modeling of wake steering and platform offsets for floating wind arrays

Author:

Lozon Ericka,Hall Matthew,Mahfouz Mohammad Youssef

Abstract

Abstract Wake effects are a key challenge in the design and analysis of wind farms. For floating wind farms, the platforms offset under the aerodynamic loading of the turbine and are constrained by mooring systems that can vary significantly in allowable offsets. When considering wake steering, the crosswind offset of the turbine can counteract the lateral deflection of the wake. This work presents a tool to efficiently model the coupled impacts of wake steering and platform offsets for floating wind farms. The tool relies on the frequency-domain wind farm model RAFT and the steady-state wake model FLORIS. A verification with FAST.Farm is presented, then the tool is applied to a simple two-turbine case study. A range of mooring systems with increasing platform offsets and varied yaw misalignment angles are considered while comparing the impact on turbine power. Additional sensitivities to turbine spacing and mooring system orientation are explored. The results show that there is a least-optimal watch circle width for downwind turbine power production that varies with yaw misalignment angle and turbine spacing. Additionally, the turbine offsets under yaw-misaligned conditions vary significantly depending on mooring system orientation relative to the rotor plane, which in turn impacts the optimal misalignment angle. These results highlight the importance of including floating platform offsets and mooring systems in the evaluation of wake steering strategies for floating wind arrays.

Publisher

IOP Publishing

Reference15 articles.

1. Field test of wake steering at an offshore wind farm

2. Wind plant system engineering through optimization of layout and yaw control

3. Wake meandering effects on floating wind turbines

4. Effects of induction and wake steering control on power and drivetrain responses for 10 mw floating wind turbines in a wind farm;van Binsbergen;Journal of Physics: Conference Series,2020

5. Large eddy simulations of offshore wind turbine wakes for two floating platform types;Johlas;Journal of Physics: Conference Series,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3