Assessing the impacts of wakes on floating wind farms with shared anchors

Author:

Coughlan Katherine,Mahfouz Mohammad Youssef,Lozon Ericka,Arwade Sanjay

Abstract

Abstract This paper examines wake effects for floating wind farms with shared anchors. Three 20-turbine farms are examined: a grid-formation baseline with no shared anchors, a farm based on 3-line anchors, and a farm based on 6-line anchors, governed by a wind turbine spacing of 8 rotor diameters. The IEA 15 MW reference turbine on the UMaine semisubmersible platform was used with a taut mooring system in deep- water depths representative of U.S. west coast lease areas. A steady-state wake model showed that, when evaluating a sweep of wind headings, the baseline design had the lowest wake losses, with a value of 11.7 %, followed by the 6-line at 12.9% and the 3-line at 13.8%. Dynamic simulations were run in FAST.Farm to analyse the effects of wakes on mean anchor loads for wind headings that showed significant wake losses. The baseline farm showed the largest anchor load reductions due to wake effects (up to 16%), followed by the 3-line farm (up to 8%), and the 6-line farm, which showed relatively consistent load magnitudes on the 6-line anchors across all headings.

Publisher

IOP Publishing

Reference18 articles.

1. Combining economic and fluid dynamic models to determine the optimal spacing in very large wind farms: Combining economic and fluid dynamic models to determine the optimal spacing in very large wind farms;Stevens;Wind Energy,2017

2. Anchor loads for shallow water mooring of a 15 MW floating wind turbine — Part I: Chain catenary moorings for single and shared anchor scenarios;Pillai;Ocean Eng.,2022

3. Multiline anchor force dynamics in floating offshore wind turbines;Fontana;Wind Energy,2018

4. Wake Effects on Multiline Anchor Loads for Floating Offshore Wind Turbines;Balakrishnan,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3