Can mesoscale models capture the effect from cluster wakes offshore?

Author:

Gomez Miguel Sanchez,Deskos Georgios,Lundquist Julie K.,Juliano Timothy W.

Abstract

Abstract Long wakes from offshore wind turbine clusters can extend tens of kilometers downstream, affecting the wind resource of a large area. Given the ability of mesoscale numerical weather prediction models to capture important atmospheric phenomena and mechanisms relevant to wake evolution, they are often used to simulate wakes behind large wind turbine clusters and their impact over a wider region. Yet, uncertainty persists regarding the accuracy of representing cluster wakes via mesoscale models and their wind turbine parameterizations. Here, we evaluate the accuracy of the Fitch wind farm parameterization in the Weather Research and Forecasting model in capturing cluster-wake effects using two different options to represent turbulent mixing in the planetary boundary layer. To this end, we compare operational data from an offshore wind farm in the North Sea that is fully or partially waked by an upstream array against high-resolution mesoscale simulations. In general, we find that mesoscale models accurately represent the effect of cluster wakes on front-row turbines of a downstream wind farm. However, the same models may not accurately capture cluster-wake effects on an entire downstream wind farm, due to misrepresenting internal-wake effects.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3