Solving of an Inverse Boundary Value Problem for the Heat Conduction Equation by Using Lavrentiev Regularization Method

Author:

Al-Mahdawi H K

Abstract

Abstract In this paper, the inverse problem for the boundary value of the heat equation is posed and solved. It is well known that this problem classified as an ill-posed problem. The boundary value problem can be represented as an integral equation of the first kind by using the separation of variables method. The discretization of the integral equation allowed us to reduce the integral equation to a system of linear algebraic equations or a linear operator equation of the first kind on Hilbert spaces. In order to find an approximation solution, we need to apply a regularization algorithm. In this type of equation and through the regularization step we faced a non-injective operator problem. The Lavrentev regularization method was used to obtain the solution instead of the Tikhonov regularization method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. The finite-dimensional approximation for the Lavrent’ev method;Menikhes;Sib. Zh. Vychisl. Mat,1998

2. About Application of Picard Method to the Solution of Integral Equations for the First Kind;Ivanov;Bui. Inst. Politehn. Iasi.,1968

3. A Study of an Inverse Boundary Value Problem for the Heat Conduction Equation;Sidikova;Sibirskii Zhurnal Vychislitel’noi Matematiki,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3