The theory of the chain fountain revisited

Author:

Anghel Dragos-Victor

Abstract

Abstract We analyze the chain fountain effect-the chain siphoning when falling from a container onto the floor. We argue that the main reason for this effect is the inertia of the chain, whereas the momentum received by the beads of the chain from the bottom of the container (typically called “kicks”) plays no significant role. The inertia of the chain leads to an effect similar to pulling the chain over a pulley placed up in the air, above the container. In another model (the so called “scientific consensus”), it was assumed that up to half of the mechanical work done by the tension in the chain may be wasted when transformed into kinetic energy during the pickup process. This prevented the chain to rise unless the energy transfer in the pickup process is improved by the “kicks” from the bottom of the container. Here we show that the “kicks” are unnecessary and both, energy and momentum are conserved-as they should be, in the absence of dissipation-if one properly considers the tension and the movement of the chain. By doing so, we conclude that the velocity acquired by the chain is high enough to produce the fountain effect. Simple experiments validate our model and certain configurations produce the highest chain fountain, although “kicks” are impossible.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Slack dynamics on an unfurling string;Hanna;Phys. Rev. Lett.,2012

2. Understanding the chain fountain;Biggins;Proc. R. Soc. A,2014

3. Growth and shape of a chain fountain;John;EPL,2014

4. Non-linear dependence of the height of a chain fountain on drop height;Andrew;Phys. Educ.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3