Monitoring the brightness temperature of the Moon throughout the lunar cycle from radio observations in the Ku band

Author:

Galeano David,Edwin A. Quintero

Abstract

Abstract Within the spectrum of radio waves, the Ku band (12 - 18 GHz ) stands out for the wide range of instruments available and for its relative ease of acquisition, given that satellite television operates in this band. This situation offers a great opportunity for the development of radio astronomy in countries with unfavorable climatic conditions for optical astronomy, since this band is only affected by dense masses of water vapor. In this article we present a methodology for the calibration of the receiver system of compact Ku-band radio telescopes, and its application in the determination of the brightness temperature of the Moon. Our methodology involves modeling the influence of the atmosphere of the Earth on the response of the radioreceptor, which minimizes the error in the calculation of the brightness temperature of the observed object. We applied the proposed methodology in the monitoring of the Lunar cycle using the Ku-band radio telescope of the Observatorio Astronomico of Universidad Tecnológica de Pereira, Colombia (OAUTP). After observing during May, June, and July of 2021, we obtained an average temperature of 213.15 K, with maximum and minimum values of 275.55 K and 150.75 K, respectively. In addition, we evidenced a delay of 5.75 days between the phase in which the maximum temperature is presented and the phase of the full Moon, which is consistent with the frequency of observation. The results show that our methodology is useful to optimize the calibration of compact Ku-band radio telescopes, and expand the potential of this type of instrument for the scientific study of radio sources other than the Sun, in this case the Moon.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3