Possibilities of R programming language in simulating microbiological synthesis processes

Author:

Nikitina Marina A.,Chernukha Irina M.

Abstract

Abstract Information technologies of biotechnological processes are based on the use of mathematical models to describe microbiological synthesis. Application of digital technologies in analysis of microbial growth patterns is mainly determined by the ability of modern programming languages to numerically integrate systems of differential equations describing the development of the microbial process in time. In Jupyter Notebook environment in the R programming language, the solution of the kinetic growth model of the E.coli microbial population was shown. Two solution methods were used - the one-step Runge-Kutta method of the fourth order of accuracy and the universal solver ODE (General Solver for Ordinary Differential Equations). Initial data of the problem in question: K s S 0 = 2 (Ks is substrate affinity S 0 constant for the biomass (microorganism), S0 is initial concentration of substrate); replicating cells m a0 = 0.01; total number of cells m 0 = 0.05; stoichiometric ratio Ys = 0.5; various ratios 1) 1 ) λ μ m = 0.0357 ; 2 ) λ μ m = 0.0714 ; 3 ) λ μ m = 0.1071 ; 4 ) λ μ m = 0.1428 ; 5 ) λ μ m = 0.2142 (λ is specific growth rate of dividing cells, μm is inactivation rate constant). As a result, the simulation and verification of microbial biomass growth process - its visual representation in the form of tabular and graphical data were carried out. In the process of simulation of E.coli growth the following peculiarity was revealed. In addition to cell division, a fairly intensive loss of their ability to divide occurs. This process is supposedly determinant in population development and limits the growth and ultimate density of the culture. Thus, information technology will help the researcher not only in studying the process, establishing patterns and predicting results, but also in making reasoned decisions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3