Author:
Barbulescu Corneliu,Dragomir Toma-Leonida
Abstract
Abstract
The real capacitors’ behaviour in electric circuits modelled by a single capacity deviates from the ideal one. In order to find better compromises between precision and simplicity, different C-R-L models are used. In these models, C, R, L are called equivalent parameters and take constant values. Under these assumptions, the capacitors are modelled as lumped parameter subsystems although it is well known that the real capacitors are essentially distributed parameter systems. As highlighted in this paper, the capacitors are also time-variant subsystems. To prove this, we use two types of experimental data: data measured during the capacitor’s discharge process and data obtained from frequency characteristics. The article proposes two estimation methods of equivalent values for the model parameters C and R based on their time variance highlighted by the experimental data. The estimation methods use a system of equations associated with the discharging of capacitors, respectively, with the frequency characteristics via polynomial regression. The experiments were carried out with an electrolytic polymer capacitor rated 220 μF, 25 V, 2.5 A rms, 85 °C, designed mainly for energy storage and filtering, the results being confirmed by experiments performed on other similar capacitors.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献