Author:
Colombaro Ivano,Font-Segura Josep,Martinez Alfonso
Abstract
Abstract
We present a derivation of a manifestly symmetric form of the stress-energy-momentum using the mathematical tools of exterior algebra and exterior calculus, bypassing the standard symmetrizations of the canonical tensor. In a generalized flat space-time with arbitrary time and space dimensions, the tensor is found by evaluating the invariance of the action to infinitesimal space-time translations, using Lagrangian densities that are linear combinations of dot products of multivector fields. An interesting coordinate-free expression is provided for the divergence of the tensor, in terms of the interior and exterior derivatives of the multivector fields that form the Lagrangian density. A generalized Leibniz rule, applied to the variation of action, allows to obtain a conservation law for the derived stress-energy-momentum tensor. We finally show an application to the generalized theory of electromagnetism.
Subject
General Physics and Astronomy