Lorentz boosts of bispinor Bell-like states

Author:

Bittencourt Victor A. S. V.,Blasone Massimo

Abstract

Abstract We describe in this paper the effects of Lorentz boost on the quantum entanglement encoded in two-particle Dirac bispinor Bell-like states. Each particle composing the system described in this formalism has three degrees of freedom: spin, chirality, and momentum, and the joint state can be interpreted as a 6 qubit state. Given the transformation law of bispinor under boosts, we compute the change of the Meyer-Wallach global measure of quantum entanglement due to the frame transformation and study its equivalence to the results obtained for the relativistic spin 1/2 Bell-like states, constructed in the framework of the irreducible representations of the Lorentz group. We verify that the monotonic increase of the global entanglement under boosts for ultra-relativistic states is solely due to an increasing of the entanglement associated with the spins subsystems. For such ultra-relativistic states, the entanglement related to the chirality degrees of freedom is invariant, and the variation of the global entanglement of bispinor states is the same as the one calculated for relativistic spin 1/2 states. We also show that the particle-particle entanglement is invariant under boosts for any Bell-like state.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bundle theoretic descriptions of massive single-particle state spaces; with a view toward relativistic quantum information theory;Journal of Physics A: Mathematical and Theoretical;2022-12-02

2. Single particle entanglement in the mid- and ultra-relativistic regime;Journal of Physics A: Mathematical and Theoretical;2021-09-30

3. Single particle entanglement of a massive relativistic particle: Dirac bispinors and spin 1/2 states;Journal of Physics: Conference Series;2020-08-01

4. Helicity rotation induced by Lorentz boosts;International Journal of Quantum Information;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3