1D/3D simulation procedure to investigate the potential of a lean burn hydrogen fuelled engine

Author:

Teodosio Luigi,Berni Fabio,Lanotte Alfredo,Malfi Enrica

Abstract

Abstract In recent years hydrogen, especially the one generated by renewable energy, is gaining increasing attention as a clean fuel to support the future mobility towards efficient and low emission solutions for propulsion systems. In this scenario, the present work deals with the virtual conversion of a single-cylinder Diesel engine, conceived for marine applications, into a hydrogen Spark Ignition (SI) unit. A simulation methodology is adopted, combining 1D and 3D Computational Fluid Dynamics (CFD) methods. First, experiments are realized on the original Diesel engine mounted on a test bench, collecting main performance indicators and emissions. A complete 1D engine model (GT-Power) is developed and validated against measurements. Then, a 3D model of the cylinder (STAR-CD) is set-up and the related combustion outcomes are compared both with 1D and experimental results, showing an overall good agreement. In the second stage, the Diesel unit is converted into a port-injected hydrogen SI engine; the 3D model is re-arranged and utilized to reproduce pre-mixed hydrogen combustions under ultra-lean air/fuel (A/F) mixtures. Also, the 1D model is partly modified and coupled to an advanced combustion sub-model integrated with fast tabulated chemical kinetics to predict the knock. In particular, 1D combustion evolution is calibrated against the results of 3D CFD hydrogen combustion simulation. Finally, the calibrated 1D model is applied to investigate the advantages of ultra-lean hydrogen combustion in terms of efficiency, NO, and unburned H2 formation at medium/high loads.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3