Data driven fault detection and diagnostics for hydronic and monitoring systems in a residential building

Author:

Abdollah M A F,Scoccia R,Aprille M

Abstract

Abstract Buildings are responsible for 40% of the global energy use and associated with up to 30% of the total CO2 emissions. The drive to reduce the environmental impact of the built environment was the catalyst to the increasing installation of meters and sensors to monitor the energy use and environmental monitoring. This is key to cost effective Fault Detection and Diagnostics (FDD) which guarantees enhanced thermal comfort for the occupants and reduction in energy use. Most of FDD research work in buildings was focused on the commercial buildings due to the higher consumption and the higher saving potential, while limited work was directed towards residential buildings. This paper investigates the usage of two supervised machine learning algorithms, namely Random Forest, K nearest neighbour, to detect and diagnose twelve faults in both the monitoring system of the indoor/outdoor conditions, and the hydronic circuit inside an apartment located in Milan using minimal features that are easy to access and inexpensive to monitor to cut down in both computational and financial costs. The thermal zones are being conditioned using an electric air to water heat pump connected to fan coils for cooling and radiant floor for heating. The faults include valve leakage, faulty temperature sensors and recirculating pump’s inadequate flow rate. The faults were modelled in a Modelica based detailed model of the apartment. After tuning the hyper-parameters of all three algorithms, the Receiver Operator Characteristics curve for each fault were compared for each algorithm to compare the optimal one to be used. The Random Forest algorithms showed the highest accuracy with almost 89% across the twelve faults. Generalization of the trained algorithm across different weathers were tested but the results were not promising.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference33 articles.

1. E2020 global status report for buildings and construction: towards a zero-emissions, efficient and resilient buildings and contraction sector;Hamilton,2020

2. A review on buildings energy consumption information;Pérez-Lombard;Energy Build.,2008

3. Commercial Building Retuning A Low-Cost Way to Improve Energy Performance;Brambley;ASHRAE J.

4. The Energy Impact of Faults in US Commercial Buildings;Roth,2004

5. Building fault detection and diagnostics: Achieved savings, and methods to evaluate algorithm performance;Lin;Build. Environ.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3