Batteries Thermal Management for Hybrid plug-in Powertrains

Author:

Perrone D.,Falbo L.,Castiglione T.,Ficarella A.,Bova S.

Abstract

Abstract Lithium-ion batteries have become the primary battery technology used for electric and hybrid vehicles powertrains. Battery temperature, however, is a critical factor for these devices, as it influences battery performance life-time and safety and must be preferably kept in the 15-35 °C range. A dynamic electro-thermal model of a lithium iron phosphate battery was developed. The model predicts battery voltage and temperature evolution in different operating conditions. A battery equivalent circuit model (ECM) with an open circuit voltage source, an ohmic resistance and a capacitor-resistor pair in series is adopted. The state-of-charge is determined by the Coulomb counting approach and the battery temperature is computed by carrying out an energy balance for the cell. The balance takes into account the difference between the heat generated within the cell and the heat loss to the environment. Finally a controller, which cools or heats the battery in order to keep its temperature in the desired range, was developed. The case of the battery pack of a hybrid plug-in powertrain during a WLTP cycle is simulated and the result of different environmental conditions are presented.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference29 articles.

1. Numerical and experimental analysis of the intake flow in a high performance four-stroke motorcycle engine: Influence of the two-equation turbulence models;Algieri;J. Eng. Gas Turbines Power,2007

2. Energy efficiency analysis of monolith and pellet emission control systems in unidirectional and reverse-flow designs;Algieri;SAE Int. J. Engines,2010

3. Experimental and numerical investigation on the effects of the seeding properties on IDA measurements;Algieri;J. Fluids Eng. Trans. ASME,2005

4. Fluid dynamic investigation of innovative intake strategies for multivalve internal combustion engines;Nigro;Int. J. Mech. Sci.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An iterative equation solver with low sensitivity on the initial value;Results in Control and Optimization;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3