Exergo-economic and exergo-environmental analysis of a binary geothermal power plant with solar boosting

Author:

Giusti E.,Ciappi L.,Ungar P.,Zuffi C.,Fiaschi D.,Manfrida G.,Talluri L.

Abstract

Abstract The exploitation of renewable energies is a solution to the energy, economic and environmental issues related to the massive use of fossil resources. Thus, investing in renewable technologies is essential to achieve the carbon-neutral scenario within 2050. In this framework, geothermal energy may have a key role. In particular, power plants with a closed binary cycle are suitable for harnessing geothermal resources with low and medium enthalpy levels. They are prone to be integrated with other renewable devices to increase the global power output. Geothermal fluid can be drawn constantly from underground throughout the day and seasons. Conversely, the availability and intensity of solar energy depend on weather conditions and the time of year. In Italy, geothermal energy is currently harvested for continuous electricity generation, while solar energy is mainly used for photovoltaic generation. For small-to-medium size plants, rated between 5 and 20 MWe, the geothermal and thermodynamic solar hybridization may lead to relevant benefits for the economic competitiveness regarding separate photovoltaic or thermodynamic solar systems. This article aims to investigate the economic and environmental aspects of geothermal power plants with a closed binary cycle coupled with a topper cycle fed by linear parabolic solar collectors. The system operation in both design and off-design conditions was analysed, and exergo-economic and exergo-environmental simulations were conducted. The application site was selected near Torre Alfina (Italy). It has a water-dominant reservoir with a pressure of 44 bar, a temperature of 140 °C, and content of non-condensable gases (NCGs) approximately equal to 2% by weight. At the design point, the net power is 8.4 MW and the first and second principle efficiencies are 9.31% and 18.45%, respectively. The exergo-economic and exergo-environmental analyses indicate that the components with the highest economic and environmental impact are the condenser, the field of solar collectors, the evaporator, and the low-pressure turbine. The levelized cost of electricity (LCOE) is equal to 14.19 c€/kWh.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3