The Thermal Network Approach to Model Occupants’ Heat and CO2 Generation Interactions: A Case Study in an Office Building in Panama

Author:

González Jinela,Mora Dafni,Austin Miguel Chen

Abstract

Abstract This investigation proposes a methodology to predict indoor air temperature and CO2 levels. For this, a two-occupant office inside a building in the Technological University of Panama is taken as a case study and modeled in Designbuilder simulation software validated via experimental data. Here, a mathematical model that considers internal heat gains by the occupants and CO2 emissions, including physical characteristics and activities developed, is constructed via the thermal network (RC) and system identification approaches. Three linear grey-box models are identified: a 4R2C for cooling system mode, a 3R2C for natural ventilation conditions, and a 1R1C for CO2 model. The results showed that the identified model is useful for estimating the indoor air temperature under both modes: “natural ventilation on” and “cooling system on,” in separated situations. Thus, it is determined that by incorporating the internal heat gain generated by the occupant in the model identification process, the data set is closer to real values than implementing a standard value as suggested by the literature. On the contrary, the CO2 model allowed an approximation between estimated and real data, but this prediction must be developed in a non-linear model for better results.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3