Optical spectra of periodically patterned dielectric surface simulated by finite-different time-domain method

Author:

Sitpathom N,Dawes J M,Muangnapoh T,Kumnorkaew P,Suwana S,Sinsarp A,Osotchan T

Abstract

Abstract A dielectric film imprinted with a hexagonal periodical pattern of nanosphere holes can be fabricated by a two-step process of depositing a dielectric thin film on a hexagonally patterned array of nanospheres fabricated by convective deposition, and then removing the nanosphere particles. In this work, the optical transmission through a dielectric slab with hexagonal pattern of half-sphere holes was simulated by finite-different time-domain (FDTD) methods. In the simulation, a short gaussian pulse of electromagnetic waves was generated and propagated through the dielectric patterned slab and the near-field diffraction from the structure was collected as a function of time. Using a Fourier transformation, the optical spectra of the structure were evaluated. The far-field diffraction was also investigated by evaluating the analytical Green’s function at given points. Several parameters of the optical response including full width at half maximum and relative intensities of high order diffraction peaks were examined for various structure sizes. The structures examined were composed of a periodic hexagonal pattern of half nanosphere holes (radius of 290 nm). In addition, the effect on the optical response of 10% elliptical shape deformation of the half-sphere holes was studied. Our calculations enable us to identify parameter schemes where the third order diffraction exceeds second order diffraction efficiency from gratings.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3