The Heat Transfer Coefficient Predictions in Engineering Applications

Author:

Wan Junchi

Abstract

Abstract Most engineering applications have boundary layers; the convective transport of mass, momentum and heat normally occurs through a thin boundary layer close to the wall. It is essential to predict the boundary layer heat transfer phenomenon on the surface of various engineering machines through calculations. The experimental, analogy and numerical methods are the three main methods used to obtain convective heat transfer coefficient. The Reynolds analogy provides a useful method to estimate the heat transfer rate with known surface friction. In the Reynolds analogy, the heat transfer coefficient is independent of the temperature ratio between the wall and the fluid. Other methods also ignore the effect of the temperature ratio. This paper summarizes the methods of predicting heat transfer coefficients in engineering applications. The effects of the temperature ratio between the wall and the fluid on the heat transfer coefficient predictions are studied by summarizing the researches. Through the summary, it can be found that the heat transfer coefficients do show a dependence on the temperature ratio. And these effects are more obvious in turbulent flow and pointing out that the inaccuracy in the determination of the heat transfer coefficient and proposing that the conjugate heat transfer analysis is the future direction of development.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time Constant as the Main Component to Optimize the Resistance Temperature Sensors’ Calibration Process;Sensors;2024-01-12

2. A Novel Machine Learning Solution for the Inverse Heat Conduction Problem with Synthetic Datasets;2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI);2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3