Muti-level voltage synthetic voltage direct power flow controller

Author:

Cao(Cao) Xinwei,Zhang(Zhang) Youjun,Sun(Sun) Zhengzheng

Abstract

Abstract Aiming at the defects of DC energy storage elements, complex structure and large volume of unified power flow controller (UPFC), the paper combines flying capacitor multilevel technology and voltage vector synthesis technology with unified direct power flow controller. A three-level direct power flow controller (3L-DPFC) and a new control strategy are proposed. By obtaining the power parameters of the receiving end and substituting them into the derived calculation formula, the compensation voltage can be deduced to adjust the phase and amplitude, and the change relationship between the compensation voltage and the power parameters of the receiving end can be calculated through multiple groups of data, so as to adjust the active power flow and reactive power flow in the power grid. Compared with the unified direct power flow controller, it has the advantages of no DC energy storage element, small volume, simple structure, and the voltage stress of each switch is reduced by half, which reduces the failure rate and economic cost of the controller. In the paper, the topology and control strategy of three-level synthetic DPFC are described in detail, and its buck AC conversion theoretical analysis is verified by simulation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Full-duty-cycle regulated three-level AC-AC converter with self-following flying capacitor;Zhang;IEEE Access,2018

2. Research and application of UPFC stability controller;Fangfang;J. Electric Power Automation Equipment,2009

3. Voltage synthesis using dual virtual quadrature sources—A new concept in AC power conversion;Divan;IEEE Trans. Power Electron.,2008

4. Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface;Ghahremani;IEEE Transactions on Power Systems,2013

5. Improving of transient stability of power systems using UPFC;Gholipour;IEEE Transactions on Power Delivery,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3