Abstract
Abstract
Let G be a primitive strongly regular graph of order n and A its adjacency matrix. In this paper, we first associate an Euclidean Jordan algebra V to G considering the real Euclidean Jordan algebra spanned by the identity of order n and the natural powers of A. Next, by the analysis of the spectra of an Hadamard logarithmic series of V we establish new admissibility conditions on the parameters of the strongly regular graph G.
Subject
General Physics and Astronomy