Dynamics of phase inclusion during rotational oscillations of simply connected annulus

Author:

Karpunin I E,Kozlov N V,Zimasova A R

Abstract

Abstract The dynamics of a phase inclusion in a coaxial liquid layer divided with a radial partition is studied experimentally. The working volume of the container is filled with a viscous liquid, inside which an air bubble, immiscible with the main phase, is injected. This inclusion has a lower density than the surrounding liquid does. The container performs rotational oscillations as a whole with the zero average rotation. Such a motion brings to the generation of a harmonically oscillating azimuthal shear flow, which, as a consequence, excites the oscillations of the phase inclusion. During the bubble’s oscillations, the displacement of its geometric center follows the sinusoidal law. On the background of such a motion a periodic deformation of the bubble is observed, i.e. the phase boundary starts oscillating. A new and surprising result of the experiments is found, when the light bubble sinks and takes a quasi-steady position near the inner wall of the layer.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3