Multi-objective optimization design for the carcass of marine flexible pipes based on BP neural network and genetic algorithm

Author:

Liao Shuting,Sun Li,Wang Hongfu,Zhang Mingyu

Abstract

Abstract The collapse of the carcass is a prominent failure mode in marine flexible pipes. This paper explores the multi-objective optimization design of the carcass layer, focusing on pivotal design variables such as the thickness of the steel strip and the height-thickness ratio of the profile. The objective functions encompass the unit length weight and critical collapse value. The optimization process integrates the BP neural network with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Furthermore, the improved minimum distance selection method is applied to extract optimal results from the Pareto front. The insights obtained from this paper hold significant potential to contribute to engineering applications, particularly in advancing the design methodologies for carcass collapse resistance.

Publisher

IOP Publishing

Reference12 articles.

1. Stochastic optimization in multivariate stratified double sampling design;Bakhshi;International Journal of Engineering Technologies and Management Research,2020

2. Search acceleration of evolutionary multi-objective optimization using an estimated convergence point;Pei;Mathematics,2019

3. A fast and elitist multiobjective genetic algorithm: NSGA-II;Deb;IEEE Transactions on Evolutionary Computation,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3