Theoretical modeling and vibration characteristics analysis of acoustic black hole beam

Author:

Li Wenzhen,Zhou Quan,Chen Zanxu,Ye Xi,Wang Hongfu

Abstract

Abstract Acoustic Black Holes (ABH) can concentrate and capture the energy of waves in specific regions of a structure. They offer significant advantages and application potential in manipulating bending waves and reducing vibrations and noise in thin-walled structures. This paper focuses on the ABH beam structure, employing a semi-analytical method to analyze its vibration characteristics. Firstly, an improved triangular series is used as the displacement-permitting function for the ABH beam. Based on the Ritz method, a semi-analytical model for the ABH beam is established. The modal analysis of the ABH beam is solved, showing good agreement with numerical results, and validating the reliability of the semi-analytical method. Subsequently, the forced vibration response of the ABH beam is studied in comparison to a homogeneous beam. The bandgap characteristics and vibration-damping properties of the ABH beam are analyzed. The results indicate that the ABH beam has multiple vibration suppression bandgaps compared to a homogeneous beam, and after applying damping to the ABH beam, it exhibits a certain level of vibration suppression effect.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3