Non-polynomial interpolation of functions in the presence of a boundary layer

Author:

Zadorin N A

Abstract

Abstract The question of interpolation of a function of one variable with large gradients in the boundary layer region is investigated. The problem is that applying of polynomial interpolation formulas on a uniform grid to functions with large gradients can lead to unacceptable errors. We study the interpolation formulas with an arbitrarily number of interpolation nodes which are exact on the singular component. This component is responsible for the main growth of the function in the boundary layer and can be found based on asymptotic expansions. It is proved that error estimates don’t depend on the singular component and its derivatives. In the case of an exponential boundary layer these estimates don’t depend on a small parameter.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Interpolation method for the boundary layer problem;Zadorin;Sub. Zh. Vychisl. Mat.,2007

2. Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids;Zadorin;Numerical Analysis and Applications,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3