Author:
Harutyunyan Artur,Badyda Krzysztof,Szablowski Łukasz
Abstract
Abstract
Due to the global climate strategy to reduce greenhouse gases and the energy crisis caused by global political and economic challenges, the development of renewable energy, as well as achieving energy security, has become a very urgent and priority issue for many countries of the world. As a renewable energy source hydrogen has a very high potential to consider a promising alternative fuel for the power generation, including gas turbines. Due to its high calorific value, low emissions and versatility, hydrogen has many advantages over conventional fuels. Also it is the fact that the gas turbine industry has made a strong commitment to developing gas turbines capable of operating with 100% hydrogen by 2030. And since gas turbines currently play a vital role in balancing the global energy system, expanding gas turbine fuel options to include hydrogen could increase their potential importance in both the energy transition and long-term energy strategies.
In recent years, most research and studies on hydrogen-fueled gas turbines, taking into account the ecological problem, have focused on the analysis of emission reduction in exhaust gases. Also, due to the difficulties of optimizing hydrogen combustion, most research and studies have concentrated on the analyzes of flame stability in gas turbine combustion chambers․ There are still many important questions that remain open and unexplored when it comes to energy and exergy analysis of hydrogen fueled gas turbines in simple and more complex systems.
In this paper, energy and exergy analizes of a hydrogen powered gas turbine in the gas-steam system was performed. The system consists of a gas turbine powered by methane blended with hydrogen at various compositions. The amount of hydrogen enrichment varies from 0 to 100% by volume. Implementation of such analyzes were done through mathematical models which had been built using Aspen HYSYS mathematical modeling program.