Author:
Alejo-Martinez Harley,Sevilla-Moreno Andrés C.,Ondo-Mendéz Alejandro,Quintero Jorge H.,Páez Carlos J.
Abstract
Abstract
Radiotherapy is an essential component in the treatment of all types of cancer. Radiotherapy uses ionizing radiation to destroy tumor tissue while reducing the damage to normal tissue as much as possible. In this work we study the effects of the spherical Bi
2
S
3 and Ta
2
O
5 nanoparticles (NPs) used as a radio-sensitization agent to increase local doses around the nanoparticle in a water medium. For low energy X-rays the dominant interaction is the photoelectric effect, which involves the absorption of a photon and the subsequent production of photoelectrons, characteristic X-rays and Auger electrons. Using a GEANT4 based simulation was determined the kinetic energy spectra of secondary electrons produced by the interaction of X-ray beam and Au, Bi
2
S
3 and Ta
2
O
5 NPs, after that was calculated the interaction processes, energy deposited, absorbed dose and the effective range distributions for the secondary electrons generated by the interaction of 100 million incident photons in the nanoparticles. The size of the nanoparticles was 20 nm and the energy distribution of the photons corresponds to the spectrum of a tube of x-rays with Tungsten anode and a peak voltage applied of 40 kV. This study demonstrates that Bi
2
S
3 and Ta
2
O
5 NPs are a viable alternative to Au NPs as a dose enhancing agent in radiotherapy.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献