Large-scale stealth trajectory optimization based on hybrid A*-Gauss pseudospectral method

Author:

Qiu Jiaduo,Xiao Shaoqiu

Abstract

Abstract For airborne electronic countermeasures, a practical and feasible stealth trajectory with low observability significantly impacts mission success. However, for long-range and large-scale trajectory optimization problems, the significant increase in the state space size will affect the feasibility and optimality of the problem solution. This paper proposes a hybrid trajectory optimization method to address the above issues. First, the A* (A-star) algorithm and cubic B-spline curve fitting method are used to generate the corresponding waypoints in the predetermined grid map under the radar detection threat to satisfy the trajectory stealth effect at the macro level. Then, the optimal control model (OCP) with the shortest flight time is solved between the waypoints to obtain segmented trajectories. Finally, the above state-control variable sequences are further used to solve the optimal control problem of the micro-level stealth trajectory coupling the radar cross section (RCS) by Gauss pseudospectral method (GPM). The numerical simulation results validate the proposed hybrid optimization method.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Framework for low-observable trajectory generation in presence of multiple radars;Inane;Journal of Guidance, Control, and Dynamics,2008

2. A three-dimensional low observable trajectory optimization method based on RCS;Chen;Journal of National University of Defense Technology,2012

3. Survey of numerical methods for trajectory optimization;Betts;Journal of Guidance, Control, and Dynamics,1998

4. Direct trajectory optimization and costate estimation via an orthogonal collocation method;Benson;Journal of Guidance, Control, and Dynamics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3