Study on size effects in micro deep drawing of stainless steel foil

Author:

Yuan S N,Xie H B,Jia F H,Wu H,Pan D,Wang T X,Zhou C,Jiang Z Y

Abstract

Abstract In this paper, the mechanism of processing parameters, such as lubrication conditions, grain size and foil thickness, on micro deep drawing (MDD) of stainless steel 304 (SUS304) foil has been investigated. The dry and glycerin-based nano-additive TiO2 lubricant with different concentrations were selected to study the effects of lubrication on MDD process. Four stainless steel samples with different thicknesses of 20, 30, 40 and 50 μm were employed in this study. Each foil was annealed under 950, 980 and 1050 °C respectively to obtain different grain sizes of the samples. The formed cups qualities in terms of surface roughness, wrinkling and earing defects were analysed, and the punch force-stroke curves and the stress-strain curves were studied in MDD. The experimental results show that 4.0 wt.% glycerin-based nano-additive TiO2 lubricant has the best lubrication effects due to its lowest drawing force and the better surface quality obtained, and the SUS304 foil with thinner thickness required smaller punch force, while the surface is more uneven in comparison with the thicker SUS304 foil. Moreover, the SUS304 foils annealed at lower temperature had smaller grains, and subsequently had smoother surface textures than those of SUS304 foils with larger grains annealed at higher temperature. The findings of size effects from lubrication, grain size and foil thickness obtained in this study will enhance the mechanism understanding of SUS304 foil deformation in MDD.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet;Fu;J. Mater. Process. Technol.,2013

2. Analysis of punch velocity dependent process window in micro deep drawing;Vollertsen;PE.,2010

3. Effects of nano-particle lubrication on micro deep drawing of My-Li alloy;Kamali;Int JAdv Manuf. Technol.,2019

4. Experimental evaluation of size effects in micro deep drawing process of thin foil material;Ramasamy;Acta Tech Corvin., Bull. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3