Liquefied natural gas (LNG) and DC electric power transfer system by cryogenic pipe of superconducting DC power transmission (SCDC)

Author:

Yamaguchi Sataro,Ivanov Yury,Sugiyama Linda

Abstract

Abstract We propose a hybrid energy transmission pipeline that combines the liquefied natural gas (LNG) cryogenic pipelines and superconducting direct current (DC) electrical power transmission cable system (SCDC). The system design is based on experimental data from the SCDC Ishikari project in Japan and related laboratory experiments. The particular structure of the hybrid cryogenic pipe connects the thermal radiation shield of the pipe that contains the DC high temperature superconducting (HTS) electrical cable to the LNG pipe and significantly reduces the heat leak into the SCDC pipe. Because the specific heat of LNG is higher than that of liquid nitrogen and the LNG transfer rate is quite high, the thermal loss of the SCDC cable becomes only 1/100 that of present-day conventional copper cables, far below the factor 1/10 reduction achievable by a stand-alone SCDC transmission lines. The LNG temperature rises by less than 2 K over a 100 km transport distance, which is negligible in actual use. LNG also saves significantly on pumping power compared to a natural gas pipeline. To liquefy the LNG at cryogenic temperature from natural gas at ambient temperature requires a large refrigerator that consumes enormous power. The gas pipeline, however, needs a compressor to produce high-pressure gas, which also consumes a massive amount of power. Due to these considerations, the proposed hybrid system is a viable design for the long-distance joint transportation of LNG and electricity.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference24 articles.

1. Research activities of DC superconducting power transmission line in Chubu University;Yamaguchi;J. Phys.: Conf. Ser.,2008

2. HTS DC cable line project, on-going activities in Russia;Sytnikov;IEEE Trans. Appl. Supercond.,2013

3. Development of HTS AC power transmission cables;Xiao;IEEE Trans. Appl. Supercond.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3