Parametric Investigation on Different Bone Densities to avoid Thermal Necrosis during Bone Drilling Process

Author:

Islam Md Ashequl,Kamarrudin Nur Saifullah,Suhaimi M.F.F.,Daud Ruslizam,Ibrahim Ishak,Mat Fauziah

Abstract

Abstract Bone drilling is a universal surgical procedure commonly used for internal fracture fixation, implant placement, or reconstructive surgery in orthopedics and dentistry. The increased temperature during such treatment increases the risk of thermal penetration of the bone, which may delay healing or compromise the fixation’s integrity. Thus, avoiding penetration during bone drilling is critical to ensuring the implant’s stability, which needs surgical drills with an optimized design. Bovine femur and mandible bones are chosen as the work material since human bones are not available, and they are the closest animal bone to human bone in terms of properties. In the present study, the Taguchi fractional factorial approach was used to determine the best design of surgical drills by comparing the drilling properties (i.e., signal-to-noise ratio and temperature rise). The control factors (spindle speed, drill bit diameter, drill site depth, and their levels) were arranged in an L9 orthogonal array. Drilling experiments were done using nine experimental drills with three repetitions. The findings of this study indicate that the ideal values of the surgical drill’s three parameters combination (S1D1Di2) and their percentage contribution are dependent on the drilling levels of the parameters. However, the result shows that the spindle speed has the highest temperature effect among other parameters in both (femur and mandible) bones.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3