Nitrogen assimilation in cassava: implications for carbon metabolism and biomass synthesis

Author:

Siriwat W,Muhardina V,Thammarongtham C,Kalapanulak S,Saithong T

Abstract

Abstract The nitrogen assimilation pathway in cassava was reconstructed by comparative genomics approach to understand the underlying metabolism as well as the interaction between carbon and nitrogen assimilation towards the synthesis of metabolic phenotype. First, theproteins of cassava were annotated via sequence similarity search against genes of 11 template plants obtained from KEGG and PMN databases, employing reciprocal BLASTp(E-value ≤ 1x10−10, identity percentage ≥ 60, and coverage percentage ≥ 80). The template plants comprised well-known plant, starchy crops, nitrogen-fixing crops and crops that are evolutionarily related to cassava and includedArabidopsis thaliana, Oryzasativa, Zea mays, Ricinuscommunis, Solanumtuberosum, Brassica rapa, Cicerarietinum, Jatrophacurcas, Medicagotruncatula, Phaseolus vulgaris and Glycine max.The pathway was then curatedwith reactions obtained from the CassavaCyc database to ensure full pathway connectivity.It was subsequently validated with cloned sequence of cassava from the GenBank and cassava transcriptome data from literature. The resulting N-assimilation pathway, covering the conversion of nitrate to amino acids (glutamine and glutamate),consists of 14 biochemical reactions corresponding to 59 genes, 73 proteins and 2 transport reactions. At least 92 percent of the identified proteins in the pathway were supported by the transcriptome data. In addition, the proposed N-assimilation pathway contains four additional enzymes, including glutamate synthase, nitrilase, formamidase and carbamoyl phosphate synthasecompared to the existing N-assimilation pathway in CassavaCyc database. Taken together, the N-assimilation pathway herein proposed identified reactions involved in N-assimilation and represents a forward step towards understanding metabolic basis for cassava yield as well as its phenotypic plasticity and adaptation to stress.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference30 articles.

1. A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems;Gomes de Oliveira Dal’Molin;Front. Plant Sci.,2015

2. Asparagine Metabolic Pathways in Arabidopsis;Gaufichon;Plant Cell Physiol.,2015

3. Carbon and nitrogen nutrient balance signaling in plants;Zheng;Plant Signal. Behav.,2009

4. Carbon Partitioning and Assimilation as Affected by Nitrogen Deficiency in Cassava;Cruz;Photosynthetica,2003

5. Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray;Utsumi;J. Plant Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3