Optimization of Large-scaled Random Access Congestion Control Oriented to Narrow Band Internet of Things

Author:

Wang Li,Wang Wei,Hu Xianhua,Xie Tairong

Abstract

Abstract Narrow band internet of things (NB-IoT), as an important low-power wide-area coverage of 5G with independent intellectual property rights, has great potential in small data monitoring of urban power transmission and distribution. However, it is extremely easy to cause congestion and overloading of the system upon large-scaled terminal requests for random access, which will decrease network access performance and bring great challenges to promote NB-IoT in urban power Internet of Things. On this basis, a mathematical model of network load was constructed to estimate and predict load changes. Then, a dynamic adjustment functional model was set up according to dynamic adjustment of access parameter optimization based on loads. Based on above idea, a random access algorithm based on dynamic parameter adjustment in accordance to dynamic priority was developed. It increases the success rate of devices access to NB-IoT system, decreases access delay of devices, and relieves network congestion. According to simulation results, the proposed algorithm has higher access success rate, lower total delay. And it guarantees delay for important node users and more optimized network performances compared with traditional network access algorithms.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3