Dynamic State Estimation of Electric Power Systems Using Kalman Filtering Techniques

Author:

Angel Basil,Duraisamy Maharajan

Abstract

Abstract The Kalman filter (KF) algorithm analyses power system state estimation using a number of specific equations to reduce the mean squared error. The Kalman filter is used to calculate the dynamic states of a power system network, including voltage and its angle at all buses (rotor angle) with respect to a synchronously rotating reference frame (in radians) and relative angular speed (in rad./sec) of all the generators in the system. Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) approaches were developed on the Anderson & Fouad 9-bus test power system in this proposed work, and the performance of the aforementioned techniques was examined for state estimation effectiveness.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Dynamic State Estimation in Power System by Applying the Extended Kalman Filter with Unknown Inputs to Phasor Measurements;Ghahremani;IEEE Transactions on Power Systems,2011

2. Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data;Fan;Electric Power Systems Research,2013

3. A robust extended Kalman filter for power system dynamic state estimation using PMU measurements;Netto

4. Kalman Filter-based Wind Speed Estimation for Wind Turbine Control;Song;International Journal of Control, Automation and Systems,2017

5. A Robust Data-Driven Koopman Kalman Filter for Power Systems Dynamic State Estimation;Netto;IEEE Transactions on Power Systems,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3