Location Technique based on Multiple Partial Discharge Signal in 11kV Underground Power Cable using EMTP-ATP Software

Author:

Halim M I A M,Rohani N K H,Rosle N,Rosmi A S C,Yii C.,Mustafa W A

Abstract

Abstract Power cables are very critical in electrical power systems as power cables failure can interrupt the electrical flow due to unexpected power failure. There are a few sorts of partial discharge (PD) estimations gadgets in the market. For instance, PD can be distinguished by utilizing Rogowski coil (RC) sensors in the disconnected procedure. The current issue PD signal does not usually occur as a single source. Thus, the analysis of multiple PD sources is required to ensure that the cable insulation is in a healthy condition. PD location technique based on multiple signals in 11kV underground power cable was conducted in this research to estimate the accurate location of the PD signal. Modelling of single power cable in a distance of 10km with the RC sensor is installed at several distances to capture the PD signal that travels along the power cable. By selecting the distance between six RC sensors and synchronous multiple PD signal, the design of the power system has been constructed by using EMTP-ATP software. Multi-point technique based on time difference of arrival (TDOA) was performed in the single line power cable to obtain the PD location. The measurement using multi-point of RC sensor technique is preferred based on the conditions due to the value of velocity elimination. Based on the results, the accurate location of PD Source 1 is detected 501 m along RC sensor A1 to RC sensor A3. In contrast, PD source 2 has been detected 2800.15 m along RC sensor A4 to RC sensor A6 with the percentage error of 0.2% and 0.0053%, respectively. The findings show that the location of multiple PD signal that occurred along the line cable can be detected accurately by using the multi-point technique and TDOA. Hence, the performance of the power system has been improved.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3