Design of readout circuit for high sampling miniaturized MEMS wall shear force sensor

Author:

Guo ZhiJiang,Guo Hui Hui,Liu tingting,Gao Yang

Abstract

Abstract Wall shear stress is one of the important measurement parameters in wind tunnel experiments. In the shock wind tunnel, the duration of the flow field is very short, usually a few milliseconds. To ensure measurement accuracy, the sampling rate should not be less than 1kHz. Due to the limitation of model volume and experimental environment, it is necessary to design a miniaturized readout circuit with high precision and high sampling rate, which is highly integrated with the MEMS wall shear stress sensor. The circuit includes a micro capacitance detection module integrated with the sensor head and a host computer signal processing and display module. Aiming at the complex measurement environment of the shock tunnel, to ensure the measurement accuracy, stability, and anti-interference ability of the weak capacitance detection circuit, a miniaturized ceramic substrate circuit is fabricated by a microstrip circuit process. The test results show that the resolution of the micro capacitance of the circuit can reach 20fF at the detection frequency of 3kHz, which can meet the measurement requirements of Shock tunnel, and realize the real-time measurement and display of wall shear stress signal.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Fluid shear stress impacts ovarian c ancer cell viability, subcellular organization, and promotes genomic instability;Hyler Alexandra;Journal of land use science,2018

2. Research progress of MEMS wall shear stress sensor;Qiang;China test,2016

3. Wall shear stress measurements by white-light oil-film interferometry;Lunte;Experiments in Fluids,2020

4. Flexible MEMS Shear Stress Sensor with Improved Performance for Wind Tunnel Measurements;Wang;Journal of The Electrochemical Society,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3