Neural network for minimizing tricriteria objective function for machine scheduling problem

Author:

Ali Faez Hassan,Chachan Hanan Ali,Abdulkareem Sharmeen Bakr

Abstract

Abstract In this paper, neural networks (NN) are implemented to manipulate a problem of machine scheduling for a single machine to minimize multicriteria objective function: maximum tardiness, maximum late work and total late work simultaneously (Tmax, Vmax, ΣVj). Also the results of applying NN are compared with some exact methods, some heuristic methods and local search methods [7,14]. The used NN is learned by pack propagation algorithm for n = 3: 500 jobs. NN technique was be found to be effective and used to select the best efficient and optimal schedule which minimizes the objective function.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Constructing of an Artificial Neural Network to Minimize Total Completion Time and Total Tardinss;Abdul-Razaq;IOSR Journal of Mathematics,2014

2. Neural Network for Job-Shop Scheduling;Willems;Control Engineering Practice,1994

3. Integer Linear Programming Neural Networks for Job-Shop Scheduling;Foo;IEEE International Conference on Neural Networks,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3