The visualization and classification method of support vector machine in lymphoma cancer

Author:

Kristina B C,Hadi A F,Riski A,Kamsyakawuni A,Anggraeni D

Abstract

Abstract In the classical-classification multivariate process, it becomes an interesting topic to be discussed in the research area because of the larger variables with smaller observations. For this we need a method that can handle this problem. One answer is to use machine learning. SVM is a classification method in machine learning that is able to classify these data types. In addition, SVM can also model and classify relationships between variables efficiently and easy interpretation. This paper aims to create a visualization of SVM classifiers, then obtain an accuracy value to have an optimal classification with a misclassification of small numbers. This study aims to find good SVM input parameters by assessing the importance of variables using visual methods. This visualization will distinguish groups of people who contract diffuse lymphoma cancer and follicular lymphoma cancer with data on the genetic expression of lymphoma cancer. The classification using kernel Linear, Gaussian RBF, Polynomial and Sigmoid. The best classification accuracy using linear kernel functions with training data has a classification accuracy of 100% and testing data has a classification accuracy of 94, 73%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference30 articles.

1. Gene Expression Correlates of Clinical Prostate Cancer Behavior;Singh;Cancer Cell,2002

2. Menakar Tingkat Akurasi Support Vector Machine Study Kasus Kanker Payudara Statistika;Darsyah;Jurnal Statistika,2013

3. Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik Dan Support Vector Machine (SVM) Berdasarkan Hasil Mamografi;Novianti;Jurnal Sains dan Seni ITS,2012

4. Smooth Support Vector Machine Dan Multivariate Adaptive Regression Splines Untuk Mendiagnosis Kanker Payudara;Andari;Jurnal Statistika,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3