Wildfire suppression technology: Exploration for a directed energy beam (DEB) attenuating electron transfer by cyclical vacuum subduction of dioxygen dication species, O2 2+

Author:

Amoroso Richard L,Giandinoto Salvatore,Karam Sabah E

Abstract

Abstract Modeling wildfire suppression technology, inspired by Einstein’s long quest for a final theory, is based on a Unified Field Mechanical (UFM) Ontological-Phase Topological Field Theory (OPTFT) derived from modified M-theory, parameters of the Wheeler-Feynman-Cramer Transactional Interpretation, with combined extensions of a de Broglie-Bohm Implicate Order super-quantum potential as a unified field force of coherence control factor. The device is multiphasic. Operationally, O2 electron transfer attenuation occurs by nonlocal matter-wave phase adduction/subduction interference nodes in dynamic-static Casimir-Polder resonant interactions pertinent to bumps and holes within a covariant polarized Dirac vacuum as the most salient feature of dioxygen dication, O2 2+ coupling to mirror symmetric nonlocal antispace (vacuum), rather than neutral molecular species in local 3-space as demonstrated in experimental studies of dioxygen dication, O2 2+. Additionally, beam emission requires a new dual class of nonlocal OCHRE (Oscillation Coupled Helicoid Resonance Emission) in tandem with localized OCRET (Optically Controlled Resonance Energy Transfer) to produce ballistic-like conduction of vacuum energy by the summation of cyclical resonant incursive oscillations within the structure of cellular Least Units tessellating spacetime as a means of mediating the additional dimensionality (XD) of brane topological phase transitions in the Bulk. Finally, device operation requires an M-theoretic form of scalable universal quantum computing (UQC), a paradigm shift beyond confines of the locality-unitarity basis of presently standard Copenhagen quantum theory.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference190 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3