Comparison of aerodynamic planform optimization of non-planar rotors using blade element momentum method and a vortex cylinder model

Author:

Li Ang,Gaunaa Mac,Lønbæk Kenneth,Zahle Frederik,Pirrung Georg Raimund

Abstract

Abstract The present work compares non-planar rotors designed using the blade element momentum (BEM) method and a vortex cylinder model. In a previous work, it is shown that blade element theory coupled with the superposition of the vortex cylinder model (BEVC) is able to model the loads of non-planar rotors. The result predicted by the BEVC model is in significantly improved agreement with higher-fidelity models than the loads as predicted using the BEM method. In this work, the BEM method and the BEVC method are integrated into a gradient-based optimization framework for aerodynamic planform optimization, in which the analytical gradients are obtained using the algorithmic differentiation (AD) method. In the present study, the rotor is assumed to be stiff for all cases such that the pure aerodynamic effects are highlighted. Loads of the optimized non-planar rotors with different geometries under different constraints designed from both methods are calculated using the BEM method, the BEVC method and also the higher-fidelity lifting-line (LL) method. Within the constraints of the present work it was found that the advantage of the BEVC method is not significant when comparing the integrated aerodynamic loads: the non-planar rotor designed using the BEM method gives similar total thrust and power as the rotor designed using the BEVC method when the designs are evaluated with the higher-fidelity LL method. However, the results confirmed that the distributed aerodynamic loads of the non-planar rotors predicted by the BEVC method are in improved agreement with the LL method compared to the BEM method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3