Comparing wind turbine aeroelastic response predictions for turbines with increasingly flexible blades

Author:

Cao Kathy,Shaler Kelsey,Johnson Nick

Abstract

Abstract Highly flexible blades are becoming more prevalent designs as a potential solution to the transportation challenges associated with large-scale wind turbine rotors. However, there is currently no quantitative definition of “highly flexible” blades. To further develop turbines with highly flexible blades, a precise definition of the term and accurate simulations of turbines with such blades are required. Assumptions made in the traditional aerodynamic model, Blade Element Momentum (BEM) theory, are violated in turbines with flexible blades. However, Free Vortex Wake (FVW) methods can more accurately model these turbine designs. Though more computationally expensive than BEM, FVW methods are still computationally tractable for use in iterative turbine design. The purpose of this work was to determine the blade flexibility at which BEM and FVW methods begin to produce diverging aeroelastic response results. This was accomplished by simulating the BAR-DRC reference turbine with increasingly flexible blades in a range of steady, uniform inflow conditions using OpenFAST, the National Renewable Energy Laboratory’s physics-based turbine engineering tool. Blade-tip deflections confirmed that BEM and FVW results diverge as blade flexibility increases. For the 212 m rotor diameter turbine used in this study, the two methods largely agreed for smaller blade deflections. But their results differed by an average of 5% when the out-of-plane blade-tip deflections exceeded 5% of the blade length and in-plane blade-tip deflections exceeded 1.25% of the blade length, with percent differences approaching 25% at the largest deflections.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Land-based wind turbines with flexible rail-transportable blades—Part I: Conceptual design and aeroservoelastic performance;Bortolotti;Wind Energy Science,2021

2. Innovative rail transport of a supersized land-based wind turbine blade;Carron;J. Phys. Conf. Ser.,2020

3. Comparison of free vortex wake and BEM structural results for highly flexible turbines under challenging inflow conditions;Shaler,2022

4. The formation of vortices from a surface of discontinuity;Rosenhead;Proc. of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1931

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3