SBO analysis of a generic PWR-900 with ASTEC and MELCOR codes

Author:

Maccari Pietro,Mascari Fulvio,Ederli Stefano,Manservisi Sandro

Abstract

Abstract After the Fukushima accident, the interest of the public to nuclear safety has growth and the international technical nuclear community has increased his attention in the investigation and the characterization of Severe Accident (SA) scenarios. In order to simulate the different, complex and multi-physical phenomena involved in a SA, computational tools, known as SA codes, have been developed in the last decades. In order to give some insights on the modelling capabilities of these tools and the differences in the calculation results, also related to the user-effect, an analysis of an unmitigated Station Black Out (SBO) occurring in a generic Western three-loops PWR 900 MWe has been carried out by the authors in the framework of the NUGENIA TA-2 ASCOM project. The simulation results of ASTEC code (study carried out with ASTEC V2, IRSN all rights reserved, [2019]), developed by IRSN, and MELCOR 2.2 code, developed by SANDIA for USNRC, have been compared and analyzed. The SBO scenario considered takes into account the intervention of the accumulators as only accident mitigation strategy. Several figures of merits related to the thermal-hydraulic (e.g. primary pressure, cladding temperature, etc.) and to the core degradation (e.g. hydrogen production, etc.) have been considered to describe the accident evolution until the vessel failure, for the two codes comparison.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. Main modelling features of the ASTEC V2.1 major version;Chatelard;Ann. Nucl. Energy,2016

2. Scaling Issues for the Experimental Characterization of Reactor Coolant System in Integral Test Facilities and Role of System Code as Extrapolation Tool;Mascari;Proceeding of Nureth,2015

3. ETSON Views on R&D Priorities for Implementation of the 2014 Euratom Directive onSafety of Nuclear Installations;Dorsselaere;Kerntechnik,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3