Author:
Tan Boheng,Li Hongyi,Yin Le
Abstract
Abstract
Power system load forecasting is crucial for power system planning, operation, and control, which reduces operational costs and improves economic efficiency. However, the current forecasting techniques, including LSTM and ARIMA models, ignore the influence of important factors like weather conditions, public holidays, and social events on power system load, which may give rise to inaccurate prediction results. To mitigate this issue, the present work makes use of the Mann-Kendall mutation detection algorithm to detect abrupt changes in power system load caused by the factors mentioned above. A correction function is then developed to improve the prediction accuracy of a conventional prediction model like ARIMA. The experimental results validate the effectiveness of the proposed approach.
Subject
Computer Science Applications,History,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献