Optimized routines for event generators in QED-PIC codes

Author:

Volokitin V,Bastrakov S,Bashinov A,Efimenko E,Muraviev A,Gonoskov A,Meyerov I

Abstract

Abstract In recent years, the prospects of performing fundamental and applied studies at the next-generation high-intensity laser facilities have greatly stimulated the interest in performing large-scale simulations of laser interaction with matter with the account for quantum electrodynamics (QED) processes such as emission of high energy photons and decay of such photons into electron-positron pairs. These processes can be modelled via probabilistic routines that include frequent computation of synchrotron functions and can constitute significant computational demands within accordingly extended Particle-in-Cell (QED-PIC) algorithms. In this regard, the optimization of these routines is of great interest. In this paper, we propose and describe two modifications. First, we derive a more accurate upper-bound estimate for the rate of QED events and use it to arrange local sub-stepping of the global time step in a significantly more efficient way than done previously. Second, we present a new high-performance implementation of synchrotron functions. Our optimizations made it possible to speed up the computations by a factor of up to 13.7 depending on the problem. Our implementation is integrated into the PICADOR and Hi-Chi codes, the latter of which is distributed publicly (https://github.com/hi-chi/pyHiChi).

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3