Validation of Acceleration Response Modelling for Modular High Rise Structures through Full Scale Monitoring

Author:

Broderick Brian,Moore Hollie,Fitzgerald Breiffni,Hickey John

Abstract

Abstract For many tall building forms, habitability requirements associated with excessive acceleration response become a governing design criterion as building heights increase. The application of modular construction methods to high-rise construction is a relatively new concept with limited previous research being conducted on the dynamic properties of tall modular buildings. Further to this, the real contribution of individual modular elements to overall lateral stiffness is largely unknown leading to significant uncertainty in acceleration response predictions. As modular construction continues to be employed in structures of ever-increasing height, the susceptibility of this form of construction to wind induced accelerations requires further investigation. This research considers the comparison and validation of computational models of a tall volumetric corner post modular structure with an RC core. Both Finite Element Models (FEMs) and mathematically-equivalent mechanical models adapting an analytical stepped beam approach are developed and the inherent properties such as the natural frequencies and mode shapes are calculated. The inherent properties predicted by the models are compared to those obtained from the actual measured response as captured through a full-scale monitoring campaign. A full-scale monitoring campaign employing two triaxial accelerometers, a data acquisition system and a data storage system recorded the white noise ambient acceleration response of two tall, slender modular structures with overall heights of 135m and 150m. Wind speed and direction were also recorded throughout the monitoring campaigns. Structural identification techniques were used to process the measured acceleration responses and obtain estimates of the actual natural frequencies and damping ratios of the partially- and fully complete structures. The acceleration response of the structure was captured at varying stages throughout the construction programme as more storeys of modules were added to the building and the contribution of the modules to the modal properties evolved. The comparison between the measured inherent properties at the different stages of construction and the model results at the equivalent stage provides vital insight into the overall stiffness contribution of modules in high-rise modular structures. This can lead to more efficient modelling and design procedures for a novel form of building. Furthermore, comparison of the modelled properties and the results from the full-scale monitoring campaign helps to provide a better understanding of model accuracy and identifies opportunities for further refinement of the modelling of tall modular buildings to reduce model size, run time and computational expense, without loss of accuracy in wind-induced response prediction. The validation of the model and identification of stiffness contributions of the modules supports structural optimisation analyses and the numerical investigations required to include vibration response mitigation measures in future designs

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3